Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 53, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175242

RESUMO

Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.


Assuntos
Aspergilose , Hipersensibilidade , Aspergillus fumigatus , Antifúngicos , Ecossistema
2.
J Cachexia Sarcopenia Muscle ; 15(1): 81-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018317

RESUMO

BACKGROUND: Sepsis-associated muscle weakness is common in patients of intensive care units (ICUs), and it is closely associated with poor outcomes. The mechanism of sepsis-induced muscle weakness is unclear. Recent studies have found that gut microbiota and metabolites are involved in the regulation of skeletal muscle mass and metabolism. This study aimed to investigate the effects of gut microbiota and metabolites on sepsis-associated muscle weakness. METHODS: In a lipopolysaccharide (LPS)-induced inflammation mouse model, mice with different sensitivities to LPS-induced inflammation were considered as donor mice for the faecal microbiota transplantation (FMT) assay, and recipient mice were divided into sensitive (Sen) and resistant (Res) groups. Skeletal muscle mass and function, as well as colonic barrier integrity were tested and gut microbiota and metabolite composition were analysed in both groups of mice. The effect of intestinal differential metabolite vitamin K1 on LPS-triggered muscle damage was investigated, and the underlying mechanism was explored. RESULTS: Recipients exhibited varying LPS-triggered muscle damage and intestinal barrier disruption. Tibialis anterior (TA) muscle of Sen exhibited upregulated expression levels of MuRF-1 (0.825 ± 0.063 vs. 0.304 ± 0.293, P = 0.0141) and MAFbx (1.055 ± 0.079 vs. 0.456 ± 0.3, P = 0.0092). Colonic tight junction proteins ZO-1 (0.550 ± 0.087 vs. 0.842 ± 0.094, P = 0.0492) and occludin (0.284 ± 0.057 vs. 0.664 ± 0.191, P = 0.0487) were significantly downregulated in the Sen group. Metabolomic analysis showed significantly higher vitamin K1 in the faeces (P = 0.0195) and serum of the Res group (P = 0.0079) than those of the Sen group. After vitamin K1 intervention, muscle atrophy-related protein expression downregulated (P < 0.05). Meanwhile SIRT1 protein expression were upregulated (0.320 ± 0.035 vs. 0.685 ± 0.081, P = 0.0281) and pNF-κB protein expression were downregulated (0.815 ± 0.295 vs. 0.258 ± 0.130, P = 0.0308). PI3K (0.365 ± 0.142 vs. 0.763 ± 0.013, P = 0.0475), pAKT (0.493 ± 0.159 vs. 1.183 ± 0.344, P = 0.0254) and pmTOR (0.509 ± 0.088 vs. 1.110 ± 0.190, P = 0.0368) protein expression levels were upregulated in TA muscle. Meanwhile, vitamin K1 attenuated serum inflammatory factor levels. CONCLUSIONS: Vitamin K1 might ameliorate LPS-triggered skeletal muscle damage by antagonizing NF-κB-mediated inflammation through upregulation of SIRT1 and regulating the balance between protein synthesis and catabolism.


Assuntos
Transplante de Microbiota Fecal , Sepse , Humanos , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Sirtuína 1 , Vitamina K 1/efeitos adversos , Inflamação , Músculo Esquelético , Debilidade Muscular
3.
Front Microbiol ; 14: 1253197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029222

RESUMO

Aspergillus fumigatus is a common causative pathogen of aspergillosis. At present, triazole resistance of A. fumigatus poses an important challenge to human health globally. In this study, the biological characteristics and mechanisms of azole resistance of five A. fumigatus strains (AF1, AF2, AF4, AF5, and AF8) were explored. There were notable differences in the sporulation and biofilm formation abilities of the five test strains as compared to the standard strain AF293. The ability of strain AF1 to avoid phagocytosis by MH-S cells was significantly decreased as compared to strain AF293, while that of strains AF2, AF4, and AF5 were significantly increased. Fungal burden analysis with Galleria mellonella larvae revealed differences in pathogenicity among the five strains. Moreover, the broth microdilution and E-test assays confirmed that strains AF1 and AF2 were resistant to itraconazole and isaconazole, while strains AF4, AF5, and AF8 were resistant to voriconazole and isaconazole. Strains AF1 and AF2 carried the cyp51A mutations TR34/L98H/V242I/S297T/F495I combined with the hmg1 mutation S541G, whereas strains AF4 and AF8 carried the cyp51A mutation TR46/Y121F/V242I/T289A, while strain AF5 had no cyp51A mutation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed differences in the expression levels of genes associated with ergosterol synthesis and efflux pumps among the five strains. In addition, transcriptomics, RT-qPCR, and the NAD+/NADH ratio demonstrated that the mechanism of voriconazole resistance of strain AF5 was related to overexpression of genes associated with energy production and efflux pumps. These findings will help to further elucidate the triazole resistance mechanism in A. fumigatus.

4.
Mol Neurobiol ; 60(11): 6176-6187, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37432592

RESUMO

The gut microbiota are not only related to the development and occurrence of digestive system disease, but also have a bidirectional relationship with nervous system diseases via the microbiota-gut-brain axis. At present, correlations between the gut microbiota and neurological diseases, including stroke, are one of the focuses of investigation and attention in the medical community. Ischemic stroke (IS) is a cerebrovascular disease accompanied by focal neurological deficit or central nervous system injury or death. In this review, we summarize the contemporary latest research on correlations between the gut microbiota and IS. Additionally, we discuss the mechanisms of gut microbiota implicated in IS and related to metabolite production and immune regulation. Moreover, the factors of gut microbiota that affecting IS occurrence, and research implicating the gut microbiota as potential therapeutic targets for IS, are highlighted. Our review highlights the evidential relationships and connections between the gut microbiota and IS pathogenesis and prognosis.


Assuntos
AVC Isquêmico , Microbiota , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Humanos , Microbiota/fisiologia , Sistema Nervoso Central , Encéfalo/fisiologia
5.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37464732

RESUMO

The incidence of diseases that are caused by fungal infection is gradually increasing, together with antibiotic abuse and the number of patients with hypoimmunity. The many challenges in clinical anti-fungi treatment include serious adverse effects and drug resistance. The mitochondria of fungi have been found to be closely associated with pathopoiesia and drug resistance. Hence, we investigated patterns in Candida mitochondrial genes codon usage bias to provide new information to guide anti-fungal research. According to the nucleotide composition results, most mitochondrial genes of the analysed Candida tended to use A/T bases rather than G/C bases. The relative synonymous codon usage values demonstrated that UUA, AGU, CCU, GCU, UGA, AGA and GGU were the common preferential codons of mitochondrial genes in 12 Candida species. Codon adaptation index (CAI) analysis indicated that the ATP9 of Candida parapsilosis had the highest value, and the ND6 of C. auris had the lowest value. The CAI clearly correlated with the codon bias index, except in C. maltose and C. viswanathii, and was significantly positively correlated with the average GC content. Together, our results suggested that the codon usage pattern is affected by multiple factors, among which GC content is critical. Nucleotide composition, selection pressure and mutation pressure influence codon bias in Candida mitochondrial genes, with dominant status to mutation pressure. Codon usage bias analyses of Candida mitochondrial genes may provide new insight into its evolution.


Assuntos
Candida , Uso do Códon , Humanos , Candida/genética , Códon/genética , Proteínas Mitocondriais/genética , Mitocôndrias/genética , Nucleotídeos/genética
6.
J Fungi (Basel) ; 9(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504760

RESUMO

Cryptococcus neoformans is an invasive fungus that causes both acute and chronic infections, especially in immunocompromised patients. Owing to the increase in the prevalence of drug-resistant pathogenic fungi and the limitations of current treatment strategies, drug repositioning has become a feasible strategy to accelerate the development of new drugs. In this study, the minimum inhibitory concentration of vitamin D3 (VD3) against C. neoformans was found to be 0.4 mg/mL by broth microdilution assay. The antifungal activities of VD3 were further verified by solid dilution assays and "time-kill" curves. The results showed that VD3 reduced fungal cell adhesion and hydrophobicity and inhibited biofilm formation at various developmental stages, as confirmed by crystal violet staining and the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Fluorescence staining of cellular components and a stress susceptibility assay indicated that VD3 compromised cell integrity. Reverse transcription quantitative PCR demonstrated that VD3 treatment upregulated the expression of fungal genes related to cell wall synthesis (i.e., CDA3, CHS3, FKS1, and AGS1). Moreover, VD3 enhanced cell membrane permeability and caused the accumulation of intracellular reactive oxygen species. Finally, VD3 significantly reduced the tissue fungal burden and prolonged the survival of Galleria mellonella larvae infected with C. neoformans. These results showed that VD3 could exert significant antifungal activities both in vitro and in vivo, demonstrating its potential application in the treatment of cryptococcal infections.

7.
Appl Microbiol Biotechnol ; 107(14): 4471-4492, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272939

RESUMO

With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.


Assuntos
Anti-Infecciosos , Micoses , Humanos , Antifúngicos/metabolismo , Fungos/metabolismo , Micoses/tratamento farmacológico , Micoses/microbiologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
9.
J Microbiol ; 61(2): 221-232, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36809632

RESUMO

Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Antifúngicos/farmacologia , Candida , Serratia marcescens , Biofilmes , Criptococose/microbiologia
10.
Microbiol Spectr ; 11(1): e0380122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625571

RESUMO

Oropharyngeal candidiasis (OPC), which has a high incidence in immunocompromised and denture stomatitis patients, is commonly caused by Candida albicans infection and in some cases develops into disseminated candidiasis throughout the throat and esophagus, resulting in high mortality. New drugs are needed to combat OPC because of the limited treatment options currently available and increasing resistance to existing drugs. Here, we confirmed that riboflavin (RF), a cofactor of flavin adenine mononucleotide and flavin adenine dinucleotide, has broad-spectrum anti-Candida activity. The formation of C. albicans hyphae and biofilm was inhibited by RF. Mechanistically, RF disrupted membrane and cell wall integrity, as well as promoting reactive oxygen species and pyruvate accumulation. Furthermore, RF targeted multiple essential pathways via functional disruption of thiamine and RF metabolic pathways, central carbon metabolism, and ribosome metabolism. Similar to the results in vitro, the inhibitory effect of RF on C. albicans hyphae was confirmed in a mouse model of OPC. Moreover, after 5 consecutive days of intraperitoneal injection, RF exhibited therapeutic efficacy, as demonstrated by phenotype investigation, the fungal burden, and histopathological analysis. These findings revealed that RF exerts a multifaceted anti-Candida effect and has potential benefits in the treatment of OPC. IMPORTANCE Candida species are common pathogens in fungal infections, causing mucosal infection and invasive infection in immunodeficient patients. Given the limited classes of drugs and resistance to these drugs, new antifungal agents need to be developed. Drug repurposing is a potential method for antifungal drug development. This study demonstrated that riboflavin (RF) exhibited broad-spectrum anti-Candida activity. RF affected multiple targets involving the membrane and cell wall integrity, the accumulation of reactive oxygen species and pyruvate, and the altered metabolic pathways in C. albicans. Moreover, RF exhibited efficacy in the treatment of C. albicans in an oropharyngeal candidiasis mouse model. Taken together, the antifungal activity and the promising clinical application of RF were highlighted.


Assuntos
Candidíase Bucal , Candidíase , Animais , Camundongos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Espécies Reativas de Oxigênio , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida , Ribossomos , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Testes de Sensibilidade Microbiana
11.
Microbiol Res ; 265: 127200, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162148

RESUMO

The incidence of intra-abdominal candidiasis (IAC), characterized by high morbidity and mortality, has become a serious concern. The limitations of current antifungal drugs on the market underscores the importance of the development of novel antifungal agents. In the present study, the antifungal activity of vitamin D3 (VD3) against various Candida species was investigated. In vitro, the broth microdilution method and solid plate assay confirmed that VD3 inhibited the growth of Candida spp. in a broad-spectrum, dose-dependent manner. VD3 also had a significant antifungal effect on the initiation, development, and maturation phases of biofilm formation in Candida albicans. The mechanism of VD3 action was explored by transcriptomics and reverse transcription quantitative PCR (RT-qPCR) analysis, and showed that VD3 affects ribosome biogenesis, coenzyme metabolism, and carbon metabolism. These results suggested that VD3 may have multitarget effects against C. albicans. In the murine IAC model, VD3 reduced the fungal burden in the liver, kidneys, and small intestine. Further histopathological analysis and quantification of plasma cytokine levels confirmed that VD3 treatment significantly decreased the infiltration of inflammatory cells and the levels of plasma interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Taken together, these findings suggest a new antifungal mechanism for VD3 and indicate that VD3 could be an effective therapeutic agent for use in IAC treatment.


Assuntos
Candida albicans , Candidíase , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Carbono , Colecalciferol/farmacologia , Coenzimas/farmacologia , Citocinas , Interferons/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Fatores de Necrose Tumoral/farmacologia
12.
Int Immunopharmacol ; 111: 109089, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964406

RESUMO

Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.


Assuntos
Antifúngicos , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Inflamação , Ativação de Macrófagos , Macrófagos
13.
Appl Microbiol Biotechnol ; 106(17): 5415-5431, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35941254

RESUMO

Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi. KEY POINTS: • Mechanisms of fungal perception of heat pressure are reviewed. • The regulatory mechanism of fungal resistance to heat stress is discussed. • The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.


Assuntos
Fungos , Termotolerância , Adaptação Fisiológica , Animais , Resposta ao Choque Térmico , Humanos , Mamíferos , Transdução de Sinais
14.
Front Microbiol ; 13: 895537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572634

RESUMO

The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.

15.
Front Microbiol ; 13: 856272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558127

RESUMO

Aspergillus fumigatus is an important pathogen causing invasive aspergillosis, which is associated with high morbidity and mortality in immunocompromised people. However, the treatment of A. fumigatus infection is a growing challenge, owing to the limited availability antifungal agents and the continual emergence of drug-resistant strains. Drug repurposing is a potential strategy to solve this current problem. Sodium new houttuyfonate (SNH), derived from houttuynin, extracted from Houttuynia cordata, has anti-bacterial and anti-Candida albicans effects. However, whether it has anti-A. fumigatus activity had not been reported. In this study, the antifungal properties of SNH against A. fumigatus, including the standard strain AF293, itraconazole resistant clinical strains, and voriconazole resistant clinical strains, were evaluated in vitro and in vivo. Moreover, the potential mechanism of SNH was characterized. SNH exhibited significant fungicidal activity toward various A. fumigatus strains. SNH also inhibited fungal growth, sporulation, conidial germination and pigment formation, and biofilm formation. Further investigations revealed that SNH interfered with the A. fumigatus cell steroid synthesis pathway, as indicated by transcriptomic and quantitative real-time polymerase chain reaction analyses, and inhibited ergosterol synthesis, as indicated by cell membrane stress assays and ergosterol quantification. Moreover, daily gastric gavage of SNH significantly decreased the fungal burden in mice with disseminated infection (kidney, liver, and lung) and local tissue damage. In addition, the application of SNH downregulated the production of IL-6 and IL-17A. Together, these findings provided the first confirmation that SNH may be a promising antifungal agent for the treatment of A. fumigatus infection.

16.
Virulence ; 12(1): 2314-2326, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34490839

RESUMO

To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.


Assuntos
Anti-Infecciosos , Riboflavina , Citocinas/imunologia , Proteínas de Choque Térmico/imunologia , Riboflavina/metabolismo , Riboflavina/farmacologia
17.
Appl Microbiol Biotechnol ; 105(13): 5259-5279, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34151414

RESUMO

The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. KEY POINTS: • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.


Assuntos
Antifúngicos , Reposicionamento de Medicamentos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fungos
18.
J Mycol Med ; 31(3): 101164, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147760

RESUMO

Interactions between commensal intestinal bacteria and fungi are collectively beneficial in maintaining the balance of the gut microflora and preventing gastrointestinal diseases. However, the contributions of specific bacterial species in response to fungal dysbiosis in the gut remain poorly defined. Here, to understand the dynamic changes, we established acute a challenge with Candida albicans in mice treated without antibiotics and analyzed the changes in the diversity of bacteria during the imbalance in intestinal C. albicans with high-throughput amplicon sequencing. Our results showed significant increases in species diversity after the first day of fungal challenge and the restoration of balance among the gut microflora on the third day of challenge. To explore the interactions between the intestinal bacteria and C. albicans, the antifungal activities of bacteria isolated from the mouse feces were also determined. Nineteen aerobic bacteria with antifungal activity were identified with whole 16S rRNA gene sequencing. These bacteria were isolated on the first day of challenge more than on the third day. These results suggested that the commensal intestinal bacteria may protect the host against fungal dysbiosis in the gut by altering their own species diversity. The interaction between bacteria and fungi in the gut may be the key to maintaining the dynamic balance of microorganisms in the context of environmental changes.


Assuntos
Candida albicans , Microbioma Gastrointestinal , Animais , Bactérias/genética , Candida albicans/genética , Disbiose , Camundongos , RNA Ribossômico 16S/genética
19.
Crit Rev Microbiol ; 47(1): 1-12, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33040638

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic obstructive respiratory disease characterized by irreversible airway limitation and persistent respiratory symptoms. The main clinical symptoms of COPD are dyspnoea, chronic cough, and sputum. COPD is often accompanied by other respiratory diseases, which can cause worsening of the disease. COPD patients with dyspnoea and aggravation of cough and sputum symptoms represent acute exacerbations of COPD (AECOPD). There is mounting evidence suggesting that dysbiosis of pulmonary microbiota participates in the disease. However, investigations of dysbiosis of pulmonary microbiota and the disease are still in initial phases. To screen, diagnose, and treat this respiratory disease, integrating data from different studies can improve our understanding of the occurrence and development of COPD and AECOPD. In this review, COPD epidemiology and the primary triggering mechanism are explored. Emerging knowledge regarding the association of inflammation, caused by pulmonary microbiome imbalance, and changes in lung microbiome flora species involved in the development of the disease are also highlighted. These data will further our understanding of the pathogenesis of COPD and AECOPD and may yield novel strategies for the use of pulmonary microbiota as a potential therapeutic intervention.


Assuntos
Pulmão/microbiologia , Microbiota , Doença Pulmonar Obstrutiva Crônica/microbiologia , Animais , Progressão da Doença , Disbiose/microbiologia , Disbiose/patologia , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/parasitologia
20.
World J Microbiol Biotechnol ; 36(9): 137, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32794072

RESUMO

Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Interações Microbianas/fisiologia , Simbiose , Antifúngicos/farmacologia , Bacillus/fisiologia , Bactérias/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Fungos/efeitos dos fármacos , Lactobacillus/fisiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus/fisiologia , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...